کاربرد برق در صنعت

با آرزوی خوشبختی برای همه دوستاران علم و پیشرفت

کاربرد برق در صنعت

با آرزوی خوشبختی برای همه دوستاران علم و پیشرفت

ماشینهای الکتریکی

بسم الله الرحمن الرحیم

بنام خداوند جان و خرد

مقدمه




در واقع جریان مستقیم ابتدا برای انتقال توان الکتریکی پس از کشف تولید الکتریسیته در اواخر قرن 19 توسط توماس ادیسون بکار رفت. امروزه استفاده از جریان مستقیم برای این منظور غالباً کنار گذاشته شده است، چرا که جریان متناوب (که توسط نیکلا تسلا کشف و توسعه داده شده) برای انتقال در طول خطوط بلند بسیار مناسبتر است (جنگ جریانها را مشاهده کنید). هنوز هم انتقال توان
DC برای اتصال شبکه‌های توان AC با فرکانسهای مختلف به هم ، بکار می‌رود.

>C عموماً در بسیاری از کاربردهای کم ولتاژ استفاده می‌شود، خصوصاً در جایی که انرژی از طریق باتریها تأمین می‌شود که تنها می‌توانند ولتاژ DC تولید کنند. اکثر سیستمهای خودکار از DC استفاده می‌کنند. اگر چه ژنراتور یک وسیله AC است که از یک یکسو کننده برای تولید DC استفاده می‌کند، اغلب مدارات الکترونیکی نیاز به یک منبع تغذیه DC دارند. با وجود اینکه DC مخفف جریان مستقیم است، اما کلاً به ولتاژهای با پلاریته ثابت ، DC گفته می‌شود. برخی از انواع DC دارای تغییرات ولتاژ زیادی هستند، مانند خروجی دست نخورده یک یکسو ساز. با عبور این خروجی از یک فیلتر RC پایین گذر ، ولتاژ پایدارتری حاصل می‌شود.

معمولاً به دلیل ولتاژهای بسیار پایین بکار رفته در سیستمهای جریان مستقیم، نصب آنها نیازمند پریزها ، |کلیدها و لوازم ثابت متفاوتی از آنچه که برای جریان متناوب بکار می‌رود است. در یک وسیله جریان مستقیم این نکته بسیار مهم است که پلاریته آنرا معکوس وصل نکنیم، مگر اینکه وسیله داری یک پل دیودی برای اصلاح این امر باشد (که اکثر دستگاههای عمل کننده با باتری این امکان را ندارند). امروزه گرایشاتی در جهت سیستمهای انتقال جریان مستقیم ولتاژ بالا (
HVDC) ایجاد شده است. همچنین DC در سیستمهای برق خورشیدی که توسط باتریهای خورشیدی تغذیه می‌شوند، بکار می‌رود.

جریان مستقیم در صنعت

اگر چه در صنعت بیشتر جریانهای متناوب بکار می‌روند، گاهی جریان مستقیم نیز مورد نیاز است. چنین جریانی را یا توسط تبدیل جریان متناوب شبکه اصلی به کمک یکسو کننده‌ها و یا با استفاده از مولدهای dc خاصی بدست می‌آورند. اغلب روش دوم در کل راحت‌تر است.

مولدهای جریان مستقیم

مولدهای dc همان مولدهای القایی مرسوم هستند که با وسیله خاصی (به نام جابجاگر) مجهز هستند که در قطب‌ها (زغالها) تبدیل ولتاژ متناوب به ولتاژ مستقیم را امکان پذیر می‌سازند. یک مولد ساده جریان مستقیم از چهار قسمت اصلی زیر تشکیل شده است:

  1. قطبهای مغناطیسی: که وظیفه ایجاد میدان مغناطیسی مولد را به عهده دارد و می‌تواند بصورت آهنربای دائم و یا آهنربای الکتریکی باشد.
  2. هادیها: برای ایجاد ولتاژ القایی بکار گرفته می‌شود.
  3. کموتاتور: در ساده‌ترین حالت از دو نیم استوانه مسی که توسط میکا نسبت به یکدیگر عایق شده‌اند تشکیل می‌گردد، وظیفه یک طرفه کردن ولتاژ و جریان القایی را در خارج از مولد به عهده دارد.
  4. جاروبک: جهت انتقال جریان الکتریکی از هادیها به مصرف کننده استفاده می‌شود.

طرز کار مولد ساده جریان مستقیم

با حرکت هادیها در فضای ما بین قطبها باعث می‌شود میدان مغناطیسی توسط هادیها قطع شود. بدین ترتیب مطابق پدیده القاء در هادیها ولتاژ القاء می‌شود. ابتدا و انتهای هر کلاف به یک نیم استوانه مسی یا یک تیغه کوموتاتور وصل می‌شود، روی تیغه‌های کوموتاتور دو عدد جاروبک بطور ثابت قرار داشته و با حرکت هادیها تیغه‌های کموتاتور زیر جاروبک می‌لغزند، بدین ترتیب در ژنراتورهای جریان مستقیم از طریق کوموتاتور ولتاژ القاء شده طوری به جاروبکها منتقل می‌شود که همیشه یکی از جاروبکها دارای پلاریته مثبت و دیگری دارای پلاریته منفی است.

ماشینهای الکتریکی جریان مستقیم

وسایل تبدیل انرژی الکترومکانیکی گردان را ماشینهای الکتریکی می‌گویند. ماشینهای الکتریکی به دو طریق دسته بندی می‌شوند:

  • از نظر نوع جریان الکتریکی
    • ماشینهای الکتریکی جریان مستقیم
    • ماشینهای الکتریکی جریان متناوب
  • از نظر نوع تبدیل انرژی
    • مولدهای الکتریکی که انرژی مکانیکی را به انرژی الکتریکی تبدیل می‌کنند.
    • موتورهای الکتریکی که انرژی الکتریکی را به انرژی مکانیکی تبدیل می‌کنند.

      بطور کلی ماشینهای الکتریکی جزء وسایل تبدیل انرژی غیر خطی هستند، یعنی هر تغییر در ورودی همیشه به یک نسبت در خروجی ظاهر نمی شود.

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 15:7  توسط مهندس محمد خدابنده  |  نظر بدهید

موتور الکتریکی

مقدمه

یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.
اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. موتور شامل
آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

 

انواع موتورهای الکتریکی

موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک
DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور
DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.
اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.


مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC

  • موتورهای AC تک فاز:

معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ،
خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.

  • موتورهای AC سه فاز:

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق
AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.

سرعت موتور
AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

 

 

موتورهای پله‌ای

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.

موتورهای خطی

یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 15:3  توسط مهندس محمد خدابنده  |  نظر بدهید

راکتور هسته‌ای

دید کلی

راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.

تاریخچه

اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.


 

ساختمان راکتور

با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

 

 

 

سوخت هسته‌ای

سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.


 

غلاف سوخت راکتور

سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

مواد کند کننده نوترون

یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

خنک کننده‌ها

گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌است، مانند گازهای دی اکسید کربن و
هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.


 

مواد کنترل کننده شکافت

برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

انواع راکتورها

راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

کاربردهای راکتورهای هسته‌ای

  • راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.
  • دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 14:58  توسط مهندس محمد خدابنده  |  نظر بدهید

غنی سازی اورانیوم

 

 

مقدمه

سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235U به مقدار 0.7 درصد و 238U ‏به مقدار 3.99 درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و ‏بعد از تخلیص فلز ، اورانیوم را بصورت ترکیب با اتم فلوئور (9F ) و بصورت مولکول ‏اورانیوم هگزا فلوراید تبدیل می‌کنند که به حالت گازی است. سرعت متوسط ‏مولکولهای گازی با جرم مولکولی گاز نسبت عکس دارد.


 

غنی سازی با دستگاه سانتریفیوژ

سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده می‌شود. این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در می‌آورد و مواد متناسب با وزنی که دارند از محور فاصله می‌گیرند. در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده می‌گردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است. سانتریفیوژهایی که برای غنی سازی اورانیوم استفاده می‌شود حالت خاصی دارند که برای گاز تهیه شده‌اند که به آنها Hyper-Centrifuge گفته می‌شود. پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده می‌کردند.

غنی سازی با دیفوزیون گازی Gaseous Diffusion





گراهان در سال 1864 پدیده‌ای را کشف کرد که در آن سرعت متوسط مولکولهای ‏گاز با معکوس جرم مولکولی گاز متناسب بود. از این پدیده که به نام دیفوزیون ‏گازی مشهور است برای غنی سازی اورانیوم استفاده می‌کنند. در عمل اورانیوم ‏هگزا فلوراید طبیعی گازی شکل را از ستونهایی که جدار آنها از اجسام متخلخل ‏‏(خلل و فرج دار) درست شده است عبور می‌دهند. سوراخهای موجود در جسم ‏متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود 2.5 آنگسترم (7-‏25x10 سانتیمتر) باشد.

ضریب جداسازی متناسب با اختلاف جرم مولکولها است. روش غنی سازی ‏اورانیوم تقریبا مطابق همین اصولی است که در اینجا گفته شد. با وجود این ‏می‌توان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین ‏مرحله غنی سازی ایزوتوپها است، زیرا از هر هزاران کیلو سنگ معدن اورانیوم ‏‏140 کیلوگرم اورانیوم طبیعی بدست می‌آید که فقط یک کیلوگرم 235
U ‏خالص در آن وجود دارد. Gaseous Diffusion از جمله تکنولوژیهایی بود که ایالات متحده طی جنگ جهانی دوم در پروژه‌ای بنام منهتن (Manhattan) برای ساخت بمب هسته‌ای ، با کمک انگلیس و کانادا به آن دست پیدا کرد.

در این روش با تکرار استفاده از این صفحات فیلتر مانند ، بصورت آبشاری (
Cascade) ، میزان 235U را به مقدار دلخواه بالا می‌بردند. این روش اولین راهکارهای صنعتی برای غنی سازی اورانیوم بود که کابرد عملی پیدا کرد. نمونه‌ای از سانتریفیوژهای گازی آبشاری که برای غنی سازی اورانیوم از آنها استفاده می‌شود. Hyper-Centrifuge اما در روش استفاده از سانتریفیوژ برای غنی سازی اورانیوم ، تعداد بسیار زیادی از این دستگاهها بصورت سری و موازی بکار می‌برند تا با کمک آن بتوانند غلظت 235U را افزایش دهند.




گاز هگزافلوراید اورانیوم (UF6) در داخل سیلندرهای سانتریفیوژ تزریق می‌شود و با سرعت زیاد به گردش در آورده می‌گردد. گردش سریع سیلندر ، نیروی گریز از مرکز بسیار قوی تولید می‌کند و طی آن مولکولهای سنگینتر (آنهایی که شامل ایزوتوپ 238U هستند) از مرکز محور گردش دورتر می‌گردند و برعکس آنها که مولکولهای سبکتری دارند (حاوی ایزوتوپ 235U ) بیشتر حول محور سانتریفیوژ قرار می‌گیرند.

در این هنگام با استفاده از روشهای خاص گازی که حول محور جمع شده است جمع آوری شده به مرحله دیگر یعنی دستگاه سانتریفیوژ بعدی هدایت می‌گردد. میزان گاز هگزافلوراید اورانیوم شامل 235U که در این روش از یک واحد جداسازی بدست می‌آید به مراتب بیشتر از مقداری است که در روش قبلی (Gaseous Diffusion) بدست می‌آید، به همین علت است که امروزه در بیشتر نقاط جهان برای غنی سازی اورانیوم از این روش استفاده می‌کنند.

بزرگترین دستگاههای آبشاری سانتریفیوژ در کشورهایی مانند فرانسه ، آلمان ، انگلستان و چین در حال غنی سازی اورانیوم هستد. این کشورها علاوه بر مصرف داخلی به صادرات اورانیوم غنی شده نیز می‌پردازند. کشور ژاپن هم دارای دستگاههای بزرگ سانتریفیوژ است، اما تنها برای مصرف داخلی اورانیوم غنی شده تولید می‌کند.

غنی سازی اورانیم از طریق میدان مغناطیسی

یکی از روشهای غنی سازی اورانیوم استفاده از میدان مغناطیسی بسیار قوی می‌باشد. در این روش ابتدا اورانیوم هگزا فلوئورید را حرارت می‌دهند تا تبخیر شود. از طریق تبخیر ، اتمهای اورانیوم و فلوئورید از هم تفکیک می‌شوند. در این حالت ، اتمهای اورانیوم را به میدان مغناطیسی بسیار قوی هدایت می‌کنند. میدان مغناطیسی بر هسته‌های باردار اورانیم نیرو وارد می‌کند ( این نیرو به نیروی لورنتس معروف می‌باشد) و اتمهای اورانیوم را از مسیر مستقیم خود منحرف می‌کند. اما هسته‌های سنگین اورانیم (238U ) نسبت به هسته‌های سبکتر (235U ) انحراف کمتری دارند و درنتیجه از این طریق می‌توان 235U را از اورانیوم طبیعی تفکیک کرد.

کاربردهای اورانیوم غنی شده

  • شرایطی ایجاد کرده اند که نسبت 235U به 238U را به 5 درصد می‌‏رساند. برای این کار و تخلیص کامل اورانیوم از سانتریفوژهای بسیار قوی استفاده ‏می‌کنند.
  • برای ساختن نیروگاه اتمی ، اورانیوم طبیعی و یا اورانیوم غنی شده بین 1 تا 5 ‏درصد کافی است.
  • برای تهیه بمب اتمی حداقل 5 تا 6 کیلوگرم 235U صد درصد خالص نیاز ‏است. در صنایع نظامی از این روش استفاده نمی‌شود و بمبهای اتمی را از 239Pu که سنتز و تخلیص شیمیایی آن بسیار ساده‌تر است تهیه ‏می‌کنند.



 

نحوه تولید سوخت پلوتونیوم رادیو اکتیو

این عنصر ناپایدار را در نیروگاههای بسیار قوی می‌سازند که تعداد نوترونهای ‏موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز ‏می‌کند. عملا کلیه بمبهای اتمی موجود در زراد خانه‌های جهان از این عنصر ‏درست می‌شود.‏ روش ساخت این عنصر در داخل نیروگاههای هسته‌ای به این صورت که ‏ایزوتوپهای 238U شکست پذیر نیستند، ولی جاذب نوترون کم انرژی هستند. تعدادی از نوترونهای حاصل از شکست 235U را ‏جذب می‌کنند و تبدیل به 239U می‌شوند. این ایزوتوپ از اورانیوم بسیار ‏ناپایدار است و در کمتر از ده ساعت تمام اتمهای بوجود آمده تخریب ‏می‌شوند.

در درون هسته پایدار 239
U یکی از نوترونها خود به خود به ‏پروتون و یک الکترون تبدیل می‌شود. بنابراین تعداد پروتونها یکی اضافه شده و عنصر جدید را که 93 پروتون دارد ‏نپتونیوم می‌نامند که این عنصر نیز ناپایدار است و یکی از نوترونهای آن خود به ‏خود به پروتون تبدیل شده و در نتیجه به تعداد پروتونها یکی اضافه شده و عنصر ‏جدید پلوتونیم را که 94 پروتون دارد ایجاد می‌کنند. این کار حدودا در مدت یک هفته ‏صورت می‌گیرد.

 

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 14:55  توسط مهندس محمد خدابنده  |  نظر بدهید

نیروگاه حرارتی

مقدمه

نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.

 

مشخصات فنی نیروگاه

سوخت

سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) می‌باشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره می‌گردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری می‌شود.

آب

آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین می‌گردد.

سیستم خنک کن

برج خنک کن نیروگاه از نوع تر می‌باشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM می‌باشد و بوسیله دو عدد پمپ توسط لوله‌ای به قطر 5.2 متر آب مورد نیاز خنک کن تامین می‌گردد. دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد می‌باشد.

سیستم تصفیه آب

سیستم تصفیه آب جهت برج خنک کن

آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لوله‌های کندانسور رسوب می‌کنند (از قبیل بی‌کربناتها). این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته می‌شود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل می‌شوند. به این آب که بدون سختی بی کربنات باشد، آب نرم می‌گویند. آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده می‌شود. برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.

سیستم تصفیه آب جهت تولید بخار

چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده می‌شود. بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه فیلتر شنی می‌شود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف فیلتر کربنی فعال فرستاده می‌شود، تا کلر موجود در آب بوسیله زغال فعال جذب شود. بعد از این فیلتر یک مبدل حرارتی در نظر گرفته شده که دمای آب را در 25 درجه سانتیگراد ثابت نگه می‌دارد.

سپس این آب وارد دو دستگاه فیلتر 5 میکرونی شده و ذراتی که قطر آنها بیشتر از 5 میکرون می‌باشند، توسط این فیلترها جذب و وارد دو دستگاه ریورس اسمز می‌گردد. در این دستگاه 90% املاح محلول در آب گرفته می‌شود. آب پس از این مرحله وارد مخزن زیرزمینی می‌گردد. سپس توسط سه پمپ به فیلترهای کاتیونی و آنیونی وارد شده و پس از تنظیم
PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد
استفاده قرار می‌گیرد.

بویلر

بویلر نیروگاه دارای درام بالائی و پائینی بوده و به صورت گردش اجباری توسط سه عدد پمپ سیرکوله (Boiler Circulation Watepump) و کوره ، تحت فشار می‌باشد. درام بالایی معمولا به وزن 110 تن در ارتفاع 50.6 متری و ضخامت جداره 11 سانتیمتر می‌باشد. بویلر دارای 16 مشعل هست که در چهار طبقه و در چهار گوشه با زاویه ثابت قرار گرفته‌اند. مشعلهای ردیف پائین برای هر دو سوخت مازوت و گازوئیل بکار می‌رود.

توربین

نیروگاه از نوع ترکیب متوالی در یک امتداد (Tadem Compound) و دارای سه سیلندر فشار قوی ، فشار متوسط و فشار ضعیف می‌باشد که توربین فشار قوی و فشار متوسط در یک پوسته قرار گرفته و در پوسته دیگر توربینهای فشار ضعیف قرار دارند. توربین فشار قوی 8 طبقه و توربین فشار متوسط 5 طبقه و توربین فشار ضعیف با دو جریان متقارن و هر یک دارای 5 طبقه است. بخار از طریق دو عدد شیر اصلی در دو طرف توربین و شش عدد شیر کنترل وارد توربین فشار قوی شده و بعد از انبساط در چندین طبقه از توربین به بویلر بر می‌گردد. سپس وارد توربین فشار متوسط شده و بعد از انبساط توسط یک لوله مشترک وارد توریبن فشار ضعیف گردیده و به طرف کندانسور می‌رود.

کندانسور

کندانسور نیروگاه از نوع سطحی یک عبوری با جعبه آب مجزا می‌باشد که در زیر توریبن فشار ضعیف قرار گرفته است. برای ایجاد خلا کندانسور از دو نوع سیستم استفاده می‌شود که سیستم اول در موقع راه اندازی و توسط یک مکنده هوا انجام می‌یابد. در طول بهره برداری خلا لازم توسط دو دستگاه پمپ تامین می‌گردد که این پمپها فشار داخل کندانسور را کاهش می‌دهند.

ژنراتور

ژنراتور طوری طراحی شده است که در مقابل اتصال کوتاه و نوسانات ناگهانی بار و احیانا انفجار هیدروژن در داخل ماشین مقاومت کافی داشته باشد. سیستم تحریک آن شامل یک اکساتیر پیلوت (Pilot exiter) با ظرفیت 45 کیلوولت آمپر می‌باشد و جریان تحریک اکسایتر پیلوت در لحظه Flashing از طریق باطری خانه تامین می‌شود. ضمنا سیم پیچهای دستگاه توسط هوا خنک کاری می‌شوند.

ترانسفورمرها و تغذیه داخلی نیروگاه

  • ترانس اصلی (Main Ttansformer):این ترانس به صورت سه تک فاز با ظرفیت هر کدام 150 مگا ولت آمپر و فرکانس 50 هرتز و امپرانس ولتاژ 14.2 درصد به عنوان Step Up Tranformer ، جهت بالا بردن ولتاژ خروجی ژنراتور از 20 کیلو ولت تا 230 کیلو ولت بکار رفته است. در ضمن نسبت تبدیل ، 10.20%±247 کیلو ولت می‌باشد.
  • ترانس واحد (Unit Transformer):این ترانس با ظرفیت 35/22/22 مگا ولت آمپر و نسبت تبدیل 3/316/516%±20 و فرکانس 50 هرتز و امپدانس ولتاژ 8.5% و تپ چنجر Off- Loud ، ولتاژ 20 کیلو ولت خروجی ژنراتور را تبدیل به 6 کیلو ولت نموده و به منظور تامین مصارف داخلی نیروگاه در حین بهره برداری بکار می‌رود.
  • ترانس استارتینگ (Start up Trans): این ترانس به تعداد دو عدد ، به نامهای LTB و LTA و با ظرفیت 25/25/25 مگا ولت آمپر و نسبت تبدیل 10%±3/6/10%± کیلو ولت و فرکانس 50 هرتز و امپدانس 10% و تپ چنجر On Lead ، ولتاژ 230 کیلو ولت شبکه را تبدیل به 6 کیلو ولت نموده و شینه‌ها را طبق شکل شماتیک ضمیمه تغذیه می‌نماید.
  • ترانس تغذیه (Auxiliary Trans): ترانس تغذیه در ظرفیتهای مختلف 630/1600/2500 کیلو ولت آمپر ، ولتاژ 6 کیلو ولت را تبدیل به 400 ولت می‌نماید که جهت تامین مصارف داخلی فشار ضعیف بکار می‌رود.

سیستم آتش نشانی

  • آب: کلیه قسمتهای نیروگاه (ساختمان شیمی ، ماشین خانه ، بویلر ، کارگاه ، انبار و ...) و محوطه مجهز به سیستم آب آتش نشانی می‌باشند.
  • فوم: کلیه قسمتهای سوخت رسانی اعم از مخازن سوخت سبک و سنگین و ایستگاه تخلیه سوخت ، بویلر دیزل اضطراری و بویلر کمکی مجهز به سیستم فوم می‌باشند.
  • گاز CO2: کلیه سیستمهای الکتریکی از قبیل ساختمان الکتریکی و... توسط گاز CO2 حفاظت می‌گردد

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 14:51  توسط مهندس محمد خدابنده  |  نظر بدهید

نیروگاه اتمی

 

دید کلی

طی سالهای گذشته اغلب کشورها به استفاده از این نوع انرژی هسته‌ای تمایل داشتند و حتی دولت ایران 15 ‏نیروگاه اتمی به کشورهای آمریکا ، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه ‏مهمتری میل آیلند (Three Mile Island) در 28 مارس 1979 و فاجعه چرنوبیل (Tchernobyl) در روسیه ‏در 26 آوریل 1986، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از ‏جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتا مجبور به تجدید نظر در ‏برنامه‌های اتمی خود کرد.

ساختار نیروگاه اتمی

نیروگاه اتمی از مواد مختلفی شکل گرفته است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. ‏این مواد عبارتند از:

ماده سوخت

ماده سوخت متشکل از اورانیوم طبیعی ، اورانیوم غنی شده ، اورانیوم و پلوتونیم است. که سوختن اورانیوم بر ‏اساس واکنش شکافت هسته‌ای صورت می‌گیرد.‏

نرم کننده‌ها

‏نرم کننده‌ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و ‏برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای ‏نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون ‏بکار برده می‌شوند.

 

 

 

میله‌های مهارکننده

این میله‌ها از مواد جاذب نوترون درست شده‌اند و وجود آنها در داخل راکتور اتمی ‏الزامی است و مانع افزایش ناگهانی تعداد نوترونها در قلب راکتور می‌شوند. اگر این میله‌ها کار اصلی خود را ‏انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت راکتور چند برابر شده و حالت انفجاری یا دیورژانس ‏راکتور پیش می‌آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.‏

مواد خنک کننده یا انتقال دهنده انرژی حرارتی

این مواد انرژی حاصل از شکست اورانیوم را به خارج ‏از راکتور انتقال داده و توربینهای مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل ‏راکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. ‏این مواد می توانند گاز CO2 ، آب ، آب سنگین ، هلیوم گازی و یا سدیم مذاب باشند.‏

طرز کار نیروگاه اتمی

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در ‏این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ 235U عمل شکست انجام می گیرد و ‏انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم ، ناپایداری در هسته به وجود آمده و بعد از ‏لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دو تکه شکست و تعدادی نوترون می‌شود.

بطور متوسط تعداد نوترونها به ازای هر 100 اتم شکسته شده 247 عدد است و این نوترونها اتمهای ‏دیگر را می‌شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده
اورانیوم به ‏صورت زنجیره‌ای انجام می‌شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد. در واقع ورود ‏نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ‏
Mev‏200 میلیون الکترون ‏ولت است.

این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات ‏است. که اگر به صورت زنجیره‌ای انجام شود، در کمتر از هزارم ثانیه مشابه
بمب اتمی عمل خواهد کرد. اما ‏اگر تعداد شکستها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست ، اتم بعدی ‏شکست حاصل کند شرایط یک نیروگاه اتمی بوجود می‌آید. ‏

نمونه عملی

نیروگاهی که دارای 10 تن اورانیوم طبیعی است قدرتی معادل با 100 مگاوات خواهد داشت و بطور متوسط ‏‏105 گرم 235U در روز در این نیروگاه شکسته می شود و همانطور که قبلا گفته شد در اثر جذب ‏نوترون بوسیله ایزوتوپ 239U ، 238U بوجود می‌آمد که بعد از دو بار انتشار ذرات بتا (‏الکترون) به 239Pu تبدیل می‌شود که خود مانند 235U شکست پذیر است. در این عمل 70 گرم ‏پلتونیوم حاصل می‌شود.

ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترونهای موجود در نیروگاه زیاد باشند مقدار جذب به مراتب ‏بیشتر از این خواهد بود و مقدار پلتونیومهای بوجود آمده از مقدار آنهایی که شکسته می‌شوند بیشتر خواهند ‏بود. در چنین حالتی بعد از پیاده کردن میله‌های سوخت می‌توان پلتونیوم بوجود آمده را از
اورانیوم و ‏فرآورده‌های شکست را به کمک واکنشهای شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 14:49  توسط مهندس محمد خدابنده  |  نظر بدهید

تولید الکتریسته

تولید الکتریسیته اولین فرایند در ارائه الکتریسیته به مصرف کننده هاست. سه فرایند دیگر انتقال توان الکتریکی، توزیع الکتریسیته و فروش الکتریسیته است.


اهمیت تولید الکتریسیته، انتقال و توزیع آن زمانی کشف شد که معلوم شد الکتریسیته برای تهیه گرما، روشنایی و توان مورد نیاز برای دیگر فعالیت های انسانی، مفید است. تولید الکتریسیته غیر متمرکز نیز زمانی ممکن شد که کارشناسان فهمیدند خطوط برق جریان متناوب می توانند الکتریسیته را با قیمت ارزان در طول فواصل بلند و توسط بهره برداری از مزیت قابلیت تبدیل ولتاژ با استفاده از ترانسفورماتورهای توان، انتقال دهند.

برای مدت 120 سال، الکتریسیته از منابع مختلف
انرژی پتانسیل و به منظور فراهم آوردن انرژی فن آوری های بشر، تولید می شده است. اولین نیروگاه برق توسط چوب راه اندازی شد، در حالی که امروزه نیروگاه ها با نفت، گاز طبیعی، زغال سنگ، سیستم برق آبی و انرژی هسته ای و به میزان کمی با هیدروژن، انرژی خورشیدی، کنترل جزر و مد و ژنراتورهای بادی کار می کنند. تولید و توزیع الکتریسیته اغلب در دستان بخش خصوصی یا دولتی که خدمات رفاهی عمومی را در اختیار دارند، بوده است. در سالهای اخیر برخی دولت ها به عنوان بخشی از حرکتی برای اعمال فشار بازار به حقوق انحصاری، شروع به خصوصی سازی یا شرکتی کردن این خدمات رفاهی کرده اند. بازار الکتریسیته نیوزیلند مثالی از این نوع است.

تقاضای الکتریسیته را می توان به دو صورت ارضاء کرد. روش اول که تا کنون برای خدمات رفاهی به کار می رفته است، ساختن پروژه های بزرگ تولید و ارسال الکتریسیته لازم به
اقتصادهای سوختی در حال رشد، است. بسیاری از این پروژه ها دارای تاثیرات زیست محیطی نامطلوب نظیر آلودگی هوا یا آلودگی تشعشعی و آب گرفتگی بخش وسیعی از زمین، هستند.

تولید پراکنده به عنوان روش جدیدی (روش دوم) برای برطرف کردن تقاضای الکتریکی، در نزدیکی مصرف کننده ها شناخته شده است. پروژه های کوچک تر پراکنده دارای خصوصیات زیر هستند:

ـ حفاظت در برابر خاموشی های برق ناشی از متوقف کردن نیروگاه های غیر متمرکز یا خطوط انتقال به منظور تعمیر، فریب بازار یا توقفهای اضطراری.

ـ
کاهش آلودگی.

ـ اجازه دادن به بازیگران کوچک تر برای ورود به بازارهای انرژی.

روش های تولید الکتریسیته

روش های تبدیل توان های دیگر به توان الکتریکی
توربین های دوار که به ژنراتورهای الکتریکی متصل شده اند، اکثر الکتریسیته تجاری موجود را تولید می کنند. توربین ها عموماً توسط بخار، آب، باد یا دیگر مایعات به عنوان یک واسطه حامل انرژی، گردانده می شوند. پیل های سوختی که برای تولید الکتریسیته از مواد شیمیایی مختلفی استفاده می کنند، توسط برخی از مردم مناسب ترین منبع برق برای بلند مدت شناخته می شوند، خصوصاً اگر بتوان از هیدروژن به عنوان ماده تغذیه در این پیل ها استفاده کرد. اما به هرحال هیدروژن معمولاً تنها یک حامل انرژی است و بایستی توسط منابع توان دیگری ایجاد شود.

ژنراتورهای کوچک قابل حمل نیز عموماً توسط موتورهای دیزل کار می کنند که خصوصاً در کشتی ها، مکان های مسکونی دور افتاده و
برق اضطراری
استفاده می شوند.

منابع انرژی اولیه، بکار رفته در تولید انرژی الکتریکی
جهان امروز برای تولید انرژی بر زغال سنگ و گاز طبیعی تکیه می کند. هزینه های بالای مورد نیاز برای انرژی هسته ای و ترس از خطرات این انرژی، از دهه 1970م جلوی تاسیس نیروگاه های جدید هسته ای را در آمریکای شمالی گرفته است.

توربین های بخار را می توان توسط بخارهای ناشی از منابع زمین گرمایی، انرژی خورشیدی، مایعات، سوخت های فسیلی گازی و جامد، به راه انداخت. راکتورهای هسته ای از انرژی ناشی از شکافت
اورانیوم
یا پلوتونیوم رادیواکتیو برای تولید آزمایش‌های مربوط به گرما استفاده می کنند. این راکتورها اغلب از دو مدار بخار اولیه و ثانویه تشکیل شده تا یک لایه حفاظتی اضافی را بین محل قرار گرفتن سوخت هسته ای و اتاق ژنراتور قرار دهد.

نیروگاه های برق آبی از آبی که مستقیماً از توربین ها عبور می کند، برای راه اندازی ژنراتورها استفاده می کنند.

کنترل جزر و مد از نیروی ماه بر روی بدنه آب دریاها برای گرداندن یک توربین استفاده می کنند.
ژنراتورهای بادی از باد برای گرداندن توربین هایی که با یک ژنراتور مرتبط اند، استفاده می کنند.
نیروگاه برق آبی ذخیره شده با پمپ برای هم سطح کردن تقاضاها روی یک شبکه برق به کار می رود.

تولید الکتریسیته توسط هم جوشی آزمایش‌های مربوط به گرما هسته ای به عنوان راه حلی ممکن برای تولید الکتریسیته پیشنهاد شده است. در حال حاضر برخی موانع فنی و مسایل زیست محیطی در مسیر این راه وجود دارد که اگر برطرف شوند هم جوشی، یک منبع انرژی الکتریکی نسبتاً تمیز و بی خطر را تامین خواهد کرد. پیش بینی می شود که یک راکتور آزمایشی بزرگ «
ITER) در سال 2005-2006 شروع به کار کند.

بهبود کارایی
نیروگاه های تولید مختلط «برق و گرمای ترکیب شده)، با استفاده از برق خورشیدی، سوخت های فسیلی، گازهای سنتزی، تراکم زیست یا زیست گاز به عنوان یک منبع سوختی، تولید الکتریسیته و آزمایش‌های مربوط به گرما را انجام می دهند. این نیروگاه ها می توانند به کارایی به میزان 80 درصد برسند اما انتظار می رود بسیاری از این نیروگاه ها که امروزه ساخته می شوند تنها به کارایی معادل حداکثر 55 درصد برسند. بخار گرم شده یک توربین را می گرداند و سپس گرمای اضافی برای گرم کردن فضاهای داخل ساختمان ها، فرآیندهای صنعتی یا گرم کردن گلخانه ها بکار می رود. تمامی مردم می توانند از گرمای توزیع شده از طریق یک طرح گرمایی منطقه ای بهره ببرند.

توانایی دستیابی به تولید سه گانه با استفاده از سوخت های فسیلی یا انرژی خورشیدی برای تولید گرما، الکتریسیته و سرمایش تبخیری نیز وجود دارد. این نیروگاه های ترکیبی بهترین نسبت تبدیل انرژی را بعد از نیروگاه های برق آبی دارند.

آرایه های کوچک فتو ولتایی، آسیاب های بادی و دوچرخه های مرتبط با یک توربین، همگی می توانند برای تولید الکتریسیته قابل حمل بکار برد.

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 14:44  توسط مهندس محمد خدابنده  |  نظر بدهید

انقلاب نانو تکنولوژی

مقدمه

ریچارد فاینمن طی یک سخنرانی در همایش جامعه فیزیک آمریکا در 1959 در مؤسسه تکنولوژی کالیفرنیا که بعد در آنجا استاد فیزیک شد، ایده‌هایی بنیادی در زمینه کوچک‌سازی نوشتجات ، مدارها و ماشینها ایراد کرد: "آنچه من می‌خواهم به شما بگویم، مسئله دستکاری و کنترل اشیاء در مقیاس کوچک است. تردیدی وجود ندارد که در نوک یک سوزن آنقدر جا هست که بتوان تمام دایرة ‌‌المعارف بریتانیکا را جا داد." فاینمن برای به تفکر واداشتن محققین و تأکید نمودن بر عقیده‌اش مبنی بر امکان فیزیکی چنین معجزه‌ای ، جایزه‌هایی 1000 دلاری برای اولین افرادی که به اهداف مشخص شده‌ای در کوچک‌سازی کتابها و موتورهای الکتریکی دست یابند تعیین کرد.
فاینمن تآکید کرد: "من در حال خلق ضد جاذبه نیستم که به فرض روزی اگر قوانین (فیزیک) آنچه ما می‌پنداریم، نبودند عملی شود. من صحبت از چیزی می‌کنم اگر قوانین آنچه ما می‌پنداریم باشند، عملی خواهد بود. ما به آن دست پیدا نکرده‌ایم چون خیلی ساده هنوز در صدد انجام آن نبوده‌ایم." جمله معروف ریچارد فاینمن فیزیکدان برجسته در این زمینه که می‌فرماید: فضای زیادی در سطوح پایین وجود دارد، بیانگر این مدعاست. هر کشوری در پی آن است که فرصتها را کشف کند تا بتواند پیشرفت کند.
تاریخ کشورهایی که امروزه ما آنها را کشورهای پیشرفته و ثروتمند می‌دانیم هم حاکی از همین مسئله است، کشورهایی که به انقلاب صنعتی روی خوش نشان دادند، کشورهایی که با فناوری دیجیتال همگام شدند، کشورهایی که از همان ابتدا کامپیوتر و جهان پس از آن را باور کردند و ... . این فرصتها هر چندین سال یک بار اتفاق می‌افتند و هر کشوری که گوش به زنگ باشد می‌تواند از آثار مثبت آنها برخوردار شود. اکنون نانو تکنولوژی هم یک فرصت است، فرصتی که اگر به آن بها داده شود می‌تواند یک جهش علمی و اقتصادی در پی داشته باشد بخصوص برای کشور ما. ما باید علوم و فناوریهای جدید را با آغوش باز بپزیریم و برای آن هزینه کنیم.
اما متأسفانه به نظر نمی‌رسد که در کشور ما توجه خاصی به این مسئله شده باشد، اما حقیقتا درصد بسیار کمی از این حرفها راهی بسوی عملی شدن پیدا می کنند. هر کشوری در پی آن است که فرصتها را کشف کند تا بتواند پیشرفت کند. در نیم قرن گذشته شاهد حضور حدود پنج فناوری عمده بودیم، که باعث پیشرفتهای عظیم اقتصادی در کشورهای سرمایه گذار و ایجاد فاصله شدید بین کشورهای جهان شد.
متأسفانه در کشور ما بدلیل فقدان جرات علمی و عدم تصمیم گیری به موقع ، به این فرصتها پس از گذشت سالیان طلائی آن بها داده می‌شد که البته سودی هم برای ما به ارمغان نمی‌آورد، همچون فنآوری الکترونیک و کامپیوتر در دو سه دهه گذشته که امروزه علیرغم توانایی دانشگاهی و داشتن تجهیزات آن ، هیچگونه حضور تجاری در بازارهای چند صد میلیاردی آن نداریم. فناوری نانو جدیدترین این فرصتهاست، که کشور ما باید برای حضور یا عدم حضور در آن خیلی سریع تصمیم خود را اتخاذ کند.

نانو بیوتکنولوژی

نانو ذرات بخاطر ریز بودن می‌توانند به درون سلولها نفوذ کرده و پرده از رازهای درون آنها برداشته ، بدون آنکه تداخل عمده ای در کار سلول بوجود آید. این فناوری در علوم زیستی و پزشکی بخصوص با فراهم آوردن امکان ایجاد تغییرات در مکانیسمهای بدن انسان ، تصحیح نقصها و درمان بیماریها کاربردهای فراوانی دارد. استفاده از این فناوری در علوم زیستی به تولد و گرایش جدیدی از این فناوری منجر شده است: نانو بیوتکنولوژی.

برخی از کاربردها در زمینه بیوتکنولوژی

نشانگرهای زیستی فلورسنت

· ترابری دارو و ژن (طراحی داروهایی با هدف گیری بسیار مطلوب که از نانو ماشینهای پروتئینی بهره می‌· برند و ...)

· تشخیص زیستی پاتو ژنها

· تشخیص پروتئینها

· جستجو در ساختار DNA

· ابداع روشهایی برای استفاده از RNA در فناوری ‌· نانو

· حرکت رباتهای زنده با نیروی ماهیچه

· مهندسی بافت

· تخریب تومور از طریق گرما دهی به آن

· بهود تباین (کنتراست)

· روشهای بیولوژیکی ذخیره کردن و بازیابی اطلاعات به منظور حل مسائل محاسباتی و دیگر کاربردها تحت کنترل در آمده‌· اند.

· ساخت سلولهای مصنوعی (با ساختارهای محدود خود تکثیر شونده و مولکولهای اطلاعاتی خود تکرار شونده)

· فرآیندهای تشخیص و ردیابی مقادیر بسیار کم ماده

· شناسایی و درمان بیماریها و کشف داروها

· ساخت حسگرها (استفاده از حسگرهای مغناطیسی جهت شناسایی ویروسها)

· ساخت میکرو آرایه‌· های DNA با نانومُهر زنی

· نتایج بررسی بالینی فناوری Nano - JETA RT- PCR توسط شرکت Acrongenomics

· طراحی و ساخت کارتهای نانویی برای کاهش درد و افزایش شادابی انسان

نانو کامپوزیتهای خاک رس _ پلیمر

نانو کامپوزیتهای خاک رس _ پلیمر بهبود فوق العاده‌ای در بسیاری از خواص فیزیکی و مهندسی پلیمرهایی که در آنها از مقدار کمی پر کننده استفاده می‌شود، ایجاد می‌کند. در این نوع مواد از خاک رسهای نوع اسمکتیت (Smectite - type) از قبیل هکتوریت ، مونت موریلونیت و میکای سنتزی به عنوان پر کننده برای بهبود خواص پلیمرها استفاده می‌شود. خاک رسهای نوع اسمکتیت ساختاری لایه‌ای دارند و با توجه به طبیعت پیوند بین اتمهای این لایه‌ها ، این مواد خواص فوق العاده‌ای را در جهت موازی لایه‌ها نشان می‌دهند. در نانو کامپوزیتهای خاک رس نه تنها دانه‌های خاک رسی را از هم جدا می‌کنند، بلکه لایه‌های هر دانه را نیز از هم جدا می‌کنند.
با انجام این عمل ، خواص مکانیکی فوق العاده هر دانه نیز بطور موثر بکار می‌آید و این در حالی است که در اجزای تقویت شده نیز بطور چشمگیری افزایش پیدا می‌کند، زیرا هر جزء خاک رس خود از صدها تا هزاران لایه تشکیل شده است. خواص مهندسی و فیزیکی بهبود قابل توجهی می یابند، مانند: افزایش ضریب یانگ ، قدرت کشسانی ، مقاومت در برابر تغییر شکل بر اثر گرما ، مقاومت در برابر آتش ، مقاومت باریر (
barrier resistance) ، هدایت یونی و شکل‌پذیری. امتیاز دیگرشان این است که تأثیر قابل توجهی بر خواص اپتیکی پلیمر ندارند. ضخامت یک لایه خاک رس منفرد ، بسیار کمتر از طول موج نور مرئی است. از نظر اپتیکی شفاف و تقریبا بی رنگ هستند. کاربردها

· نایلون 6 به عنوان روکش نوار زمان سنج خودروها ،· محافظ روی موتورها و استفاده در قسمتهای مختلف خودروها از جمله: بدنه ،· صندلی ،· سی ستم سوخت رسانی و ... .بسته بندی نوشیدنیها

· ساخت بطریهای چندلایه

· صنعت لاستیک (کاربرد تجارتی)

· افزایش مقاومت لاستیک در برابر سایش

· افزایش استحکام مکانیکی (افزایش مقاومت در برابر نفوذ پذیری)

· افزایش مقاومت گرمایی

· کاهش قابلیت اشتعال

· بهبود بخشیدن اعوجاج گرمایی

· کاهش وزن

· افزایش مقاومت

محققین دانشگاه لندن در انگلستان و دانشگاه
Paris Sud در فرانسه ،· شبیه‌· سازیهایی براساس مکانیک کوانتوم برای مطالعه نانو کامپوزیتهای خاک‌· رس – پلیمر بکار برده‌· اند. امروزه این ترکیبات یکی از موفقترین مواد نانوتکنولوژی هستند،· زیرا بطور همزمان مقاومت بالا و شکل‌· پذیری از خود نشان می‌· دهند؛ خواصی که معمولا در یکجا جمع نمی‌· شوند.

چشم انداز بحث

تغییرات در مقیاس نانومتری برخواص موج ‌گونه الکترونهای درون مواد اثر می‌گذارد. با جابجا کردن اتمها در این مقیاس می‌توان خواص اصلی مواد (به عنوان مثال دمای ذوب ، اثرات مغناطیسی ، ظرفیت بار) را بدون تغییر کلی ترکیب شیمیایی مواد ، دگرگون ساخت. پیش‌بینی رفتار و خواص در محدودهای از ابعاد برای نانوتکنولوژیستها حیاتی است. خوشبختانه در طول دو دهه قبل روشهای تحلیلی به حدی از تکامل رسیده‌اند که می‌توانند تمام مقیاسهای طول و زمان را از ابعاد الکترونی تا ابعاد بزرگ پوشش دهند.

مدل‌سازی رایانه‌ای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیه‌سازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیش‌بینی رفتار در مقیاس نانو و یا حدود آن قادر می‌سازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها میپردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیه سازی مولکولی عمل می‌کنند. می‌توان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساخته‌شده در مقیاس نانو و میکرو بکار برد

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 4:22  توسط مهندس محمد خدابنده  |  نظر بدهید

مبانی نانو تکنولوژی

دید کلی

نانو تکنولوژی نظیر هر فناوری دیگری همچون یک تیغ دولبه است که می‌توان از آن در مسیر خیر و صلاح و یا نابودی و فنا استفاده به عمل آورد. گام اول در راه بهره‌گیری از این فناوری شناخت دقیق‌تر خصوصیات آن و آشنایی با قابلیت‌‌های آن است که می‌توان به روشنی و بدون ابهام مورد تاکید قرار داد. این فناوری جدید هنوز ، حتی برای متخصصان ، شناخته شده نیست و همین امر هاله ابهام آن را ضخیمتر می‌کند و راه را برای گمانزنی‌های متنوع هموار می‌سازد.

تاریخچه

تحقیق در قلمرو نانو تکنولوژی از اواخر دهه 1950 آغاز شد و در دهه 1990 نخستین نتایج چشمگیر از رهگذر این تحقیقات عاید بشر گردید. از جمله آنکه یک گروه از محققان شرکت آی.بی.ام موفق شدند 35 اتم گزنون را بر روی یک صفحه از جنس نیکل جای دهند و با کمک این تک اتمها نامی را بر روی صفحه نیکلی درج کنند. محققان دیگر به بررسی درباره ساختارهای ریز موجود در طبیعت نظیر تار عنکبوت‌ها و رشته‌های ابریشم پرداختند تا بتوانند موادی نازک‌تر و مقاوم‌تر تولید کنند.

عقاید مختلف درباره نانو تکنولوژی

افرادی بر این باورند که این فناوری نظیر هیولای فرانکشتین در داستان مری شلی و یا همانند جعبه پاندورا در اسطوره‌های یونان باستان ، مرگ و نابودی برای ابنای بشر در پی دارد. در مقابل گروهی نیز معتقدند که به مدد توانایی‌های حاصل از این فناوری می‌توان عالم را گلستان کرد. در حال حاضر 450 شرکت تحقیقاتی تجاری در سراسر جهان و 270 دانشگاه در اروپا ، آمریکا و ژاپن با بودجه‌ای که در مجموع به 4 میلیارد دلار بالغ می‌شود سرگرم انجام تحقیقات در عرصه نانو تکنولوژی هستند.

اهمیت نانو تکنولوژی

در قلمرو نانو تکنولوژی اتمها و ذرات رفتاری غیر متعارف از خود به نمایش می‌گذارند و از آنجا که کل طبیعت از همین ذرات تشکیل شده است، شناخت نحوه عمل آنها ، به یک معنا شناخت بهتر نحوه شکل گیری عالم است. به این ترتیب دانشمندانی که در این قلمرو به کاوش مشغولند، به یک اعتبار با خالق هستی و نقشه شگفت انگیز او در خلقت عالم آشنایی پیدا می‌کنند، اما از آنجا که دانایی توانایی به همراه می‌آورد، شناسایی رازهای هستی می‌تواند توان فوق‌العاده‌ای را در اختیار کاشفان این رازها قرار دهد.

مواد بنیادی نانو تکنولوژی

ساخت یک نوع مولکول جدید کربن موسوم به باکمینستر فولرین یا کربن- 60 راه را برای پژوهشهای بعدی هموارتر کرد. محققان با کمک این مولکول که خواص حیرت انگیز آن هنوز در درست بررسی است، لوله‌های موئینه‌ای در مقیاس نانو ساخته‌اند که می‌تواند برای ایجاد ساختارهای مختلف در تراز یک میلیونیم متر مورد استفاده قرار گیرد. بررسی‌هایی که در ابعاد نانو بر روی مواد مختلف صورت گرفته و خواص تازه‌ای را آشکار کرده است.

سخن آخر

به عنوان مثال ذرات سیلیکن در ابعاد نانو از خود نور ساتع می‌کنند و لایه‌های فولاد در این مقیاس از استحکام بیشتری در قیاس با صفحات بزرگتر این فلز برخوردار هستند. برخی شرکتها از هم اکنون بهره برداری از برخی یافته‌های نانو تکنولوژی را آغاز کرده‌اند. به عنوان نمونه شرکت آرایشی اورال از مواد نانو در محصولات آرایشی خود استفاده می‌کند تا بر میزان تاثیر آنها بیفزاید.

 |+| نوشته شده در  دوشنبه یازدهم دی 1385ساعت 4:19  توسط مهندس محمد خدابنده  |  نظر بدهید

ویژگی های روغن بعنوان ماده ایزوله در تجهیزات فشار قوی

خصوصیات روغن ایزولاسیون

روغن مهمترین و معمولترین ماده ایزوله مایع در تجهیزات فشار قوی محسوب می شود که از مواد نفتی تهیه و بهمین دلیل آنرا روغن معدنی گویند این ماده ایزوله به همراه مواد ایزوله سفت مانند کاغذ مقوای مخصوص و فیبر بکار می رود روغن معدنی مایعی است غیر قطبی و ضریب دی الکتریک شیمیایی آن 2تا5/2است ولتاز دی الکتریک روغن با توجه به حداقل نا خالص موجود در آن بالغ بر 200-100 است نا خالصی روغنی که در معرض هوا است زیاد می باشد اما نا خالصی روغن مورد استفاده در تجهیزات فشار قوی و در حال بهره برداری از طریق تصفیه به حداقل ممکن تقلیل داده میشود. تصفیه وتمیز کردن کامل روغن وممانعت ازتماس کامل ان با هوا

ولتاز دی الکتریک روغن که کاملا تمیز وخالص باشد،از ولتاز دی الکتریک هوا بیشتر است .این ولتاز تقریبا باولتاز دی الکتریک حاصل از مواد سخت تقریبا برابر است. ولتاز دی الکتریک روغن بدون ناخالصی ،رطوبت وآب ،به عنوان روغن کاملا خالص،در حدود 1000 kv/cm است.ارائه ولتاز دی الکتریک به میزان فوق،مستلزم تصفیه کامل روغن وکاهش درصد ناخالصی ها ورطوبت تا حدود صفر است.حفظ میزان ناخالصی ها در شرایط عادی وطی بهره برداری دشوار است ،اما درصد ناخالصی ها را میتوان تا حد اقل مشخصی کاهش داد تا در طول بهره برداری با درصد حد اقل حفظ شود .ولتاز دی الکتریک روغن با حد اقل ناخالصی در حدود 100-200kv/cmدربرابرولتاز با فرکانس 50 hz است.

علت اصلی بروز قوس در روغن،جابجایی ذرات وناخالصی در ان است. به همین دلیل امکان بروز قوس کاملا اتفاقی و احتمالی است واحتمال بروز قوس در روغن به میزان وسیعی تغیر میکند.

هدایت الکتریکی روغن به میزان تمیزی وناخالصی ان بستگی دارد وبه طور کلی میتوان گفت که هدایت الکتریکی مواد ایزوله مایع،به طرق زیر تامین گشته وموجبات بروز قوس را فراهم میکند :

الف-هدایت یونی:هدایت از طریق یونها

ب:هدایت ناشی از ذرات شناور در مایع :هدایت الکتریکی تحت تاثیر ناخالصیها

ج:هدایت الکترونی:هدایت ناسی از ظهور وجابجایی الکترون های ازاد در پی بروز یونیزاسیون در مایع .

ولتاژبروز قوس در روغن،متناسب با دانسیته،افزایش می یابد.عامل عمده کاهش ولتاژدی الکتریک ،ناخالصی روغن و رطوبت موجود در ان است .

رطوبت به شکل حباب های هوا وگاز در سطح خارجی هادی تحت ولتاژ ظاهر می شود .عامل موثر دیگر در مکانیزم بروز قوس در روغن ناخالصی حاصل از ذرات جامد است.ذرات سلولزی که در شرلیط رطوبی

پرمابلیته بالا دارند،در بخشهایی از مایع باشدت میدان بالا ،انباشته ومتراکم میشوند.هنگامیکه ذرات شناور به هادی تحت ولتاژ نزدیک میشوند،در فاصله بین این ذرات وهادی تحت ولتاژشدت میدان قابل ملاحظه ای ظاهر می شود .

این شدت میدان موجب می شود تاالکترون هاازملکول های روغن ازاد شوند،پدیده یونیزاسیون رخ دهدوقوس ظاهر شود .به عبارت دیگر،هدایت الکتریکی روغن،ابتدا بر اثر ذرات شناور در روغن و در مرحله بعد،در نتیجه هدایت الکترونی ویونیزاسیون افزایش می یابد.بدین ترتیب ذرات جامدوشناورسبب ایجاد حباب های بخارآب میشوند،کهدر این حالت جدا شدن ملکولها از ذرات سلولزی ،به انرژی قابل ملاحظه ای نیاز نخواهد داشت .

نقش رطوبت و ذرات شناور در روغن،در بروز قوس:

رطوبت در روغن بصورت ملکولی حل شده و محلول حاصله به امولسیون موسوم است.میزان حل شدن رطوبت وآب در ماده دی الکتریک مایع،به درجه حرارت بستگی دارد.

تاثیر فشار و درجه حرارت،در مشخصات روغن

ولتاژ بروز قوس روغن معدنی تمیز و بدون ناخالصی در حدود 15-100C ثابت بوده،به درجه حرارت بستگی ندارد.هر اندازه رطوبت در روغن بیشتر باشد،حداکثر ولتاژ دی الکتریک کمتر خواهد بود.افزایش درجه حرارت ،موجب کاهش ولتاژ دی الکتریک می شود .با افزایش درجه حرارت تا بیش از 100C رطوبت موجود در روغن به مرحله جوش رسیده،حبابهای هوا ظاهر شده شرایط بروز قوس را به سهولت فراهم میکند.لذا ولتاژ دی الکتریک در روغن کاهش می یابد .به عبارت دیگر افزایش درجه حرارت،موجب تشکیل حباب های گاز شده،ولتاژ دی الکتریک را تقلیل میدهد.ولتاژ دی الکتریک روغن که بدقت پاک و تصفیه شده باشد،در قبال فرکانس 50Hz بستگی شدیدی با فشار روغن دارد.

به منظور کاهش درصد رطوبت در روغن،درجه حرارت روغن در حدود

80-90C به مدت چند ساعت حفظ می شود که این کار به "خشک کردن" موسوم است . خشک کردن روغن در درجه حرارت فوق باعث تبخیر رطوبت موجود در ان می شود.تبخیر روغن در حرارت بیش از 100C صورت نمی پذیرد.بدین علت خشک کردن روغن در درجه حرارت مناسب انجام میشود.

برای این کار از تجهیزات مخصوص و روش گریز از مرکز همراه با درجه حرارت مناسب وگردش روغن در مدار بسته استفاده می شود. تجهیزات فوق بصورن سیار موجود بوده، وبدون نیاز به جابجایی ترلنسفورماتور وتنها با حمل دستگاه سیار خشک کن روغن به مجاورت ترانسفورماتور،جذب رطوبت روغن ممکن میشود.عمل خشک کردن بترتیب فوق در حدود 10-20 ساعت طول میکشد پس از خشک کردن روغن از هر گونه تماس ان باهوا وفضای خارج جلوگیری می شود . روغن خشک شده در معرض رطوبت هوا،قابلیت جذب رطوبت هوا را دارا بوده ولازم است تا در محفظه ای بسته که تنها از طریق فیلتر های مخصوص با هوای خارج در ارتباط است،وارد شود.خشک کردن روغن توسط دستگاه فوق،بدون تماس روغن با هوا،با گردش روغن در مدار بسته صورت می گیرد.

بروز قوس در سطح مواد ایزوله سخت واقع در روغن

ولتاژ بروز قوس در سطح مواد ایزوله سخت واقع در داخل روغن،کمتر از ولتاژ بروز قوس در روغن تمیز و بدون هر گونه ماده ایزوله دیگر است.

بعنوان مثال،ولتاژ بروز قوس در سطح مقره عبوری واقع در داخل روغن،در یک فاصله معین کمتر از ولتاژ بروز قوس بین همین فاصله متشکل از روغن خالص است.علت کاهش ولتاژ بروز قوس،نشت ذرات موجود در روغن ،در سطح ماده ایزواه سخت است.لذا خواهیم دید ولتاژ دی الکتریک روغن از طریق نصب صفحات ایزوله جدا کننده Partition موسوم به باریرBarrier افزایش می یابد .صفحات باریر از جنس مواد ایزوله سخت (فیبر یا مقوا)با ضخامت ناچیزی در روغن نصب می شوند .

میزان افزایش ولتاژ محاسبه شده،بستگی به محل نصب صفحات باریردر فاصله ایزولاسیون دارد.